1.  In D ABC, right-angled at B, AB = 24 cm, BC = 7 cm. Determine
(i) SinA , CosA
(ii) SinC , CosC.
 2.  In the figure, find tan P – cot R.
 2.  In the figure, find tan P – cot R. 
 3.  sin A =
 3.  sin A = ,calculate cos A and tan A.
,calculate cos A and tan A.
 4.  Given 15 cot A = 8, find sin A and sec A.
 4.  Given 15 cot A = 8, find sin A and sec A.
 5.  Given secq =
 5.  Given secq =  calculate all other trigonometric Ratios.
 calculate all other trigonometric Ratios.
 6.  If Ð A and Ð B are acute angles such that cos A = cos B,then show that Ð A = Ð B.
 6.  If Ð A and Ð B are acute angles such that cos A = cos B,then show that Ð A = Ð B.
 7.  If cot q =
 7.  If cot q =  ,evaluate : (i)
,evaluate : (i)  (ii) cot2q.
 (ii) cot2q.
 8.  If 3 cotA = 4, Check whether
 8.  If 3 cotA = 4, Check whether  =cos2A – sin2A or not.
=cos2A – sin2A or not.
 9.  In triangle ABC, right-angled at B, if tan A =
 9.  In triangle ABC, right-angled at B, if tan A = find the value of (i) sin A cos C +cos A sin C (ii)cos A cos C – sin A sin C.
find the value of (i) sin A cos C +cos A sin C (ii)cos A cos C – sin A sin C.
 10.  In PQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.
 10.  In PQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.
(i) SinA , CosA
(ii) SinC , CosC.
- Solution:
- Solution:In a right angled D PQR
 PR2 = PQ2 + QR2132 = 122 + QR2QR2 = 169 – 144 = 25
 QR = 5
 \tan P - cot R == 0 
- Solution:Let the right angled D ABC be right angled at B.
 In a right angled D ABC
 AC2 = AB2 + BC216 = AB2 + BC
 AB2 = 16 – 9 = 7
 AB =
 sin A =
 cos A == tan A =. 
- Solution:15 cot A = 8
 Þ cot A =
 Let ABC be the D right angled at B
 Cot A = 8/15
 Þ AB = 8, BC = 15
 AC2 = AB2 + BC2
 = 82 + 152
 = 64 + 225
 = 289
 AC == 17 
 sin A == 
 sec A == 
- Solution:
 In a right angled D ABC,
 AC2 = AB2 + BC2132 - 122 = AB2AB2 = 169 - 144
 AB = 5
- Solution:If cosA = cosB
 Þcos A – cos B = 0
 only when= 450. 
- Solution:If cot q = 
 (i)= = 
 (ii) cot2q =. 
- Solution:If 3 cot A = 4= = = ………………… (1) 
 cos2A – sin2A = sin2A(cot2A - 1) Dividing and multiplying by sin2A
 = sin2A
 = sin2A= sin2A 
 == …………………………. (2) 
 Since (1) = (2)
 LHS = RHS.
- Solution:If tan A = 
 In a right angled D ABC, right angled at B
 AC2 = AB2 + BC2
 \AC == 2 
 sin A =, cos A = sin C = cos C = 1/2 
 (i) sin A cos C + cos A sin C
 == = 1 
 (ii) cos A cos C – sin A sin C= 0. 
- Solution:
 PR + QR = 25
 PQ = 5 cm
 In a right angled D PQR, PQ2 + QR2 = PR2 …………………… (1)
 Let PR = x
 QR = (25 – x)
 From 1 x2 = 52 + (25 – x)2
 x2 = 25 + (25)2 – 2 ´ 25x + x2
 = 625 + 25 – 50x
 50x = 650
 x == 13 
 PR = 13 cm
 QR = 12 cm
 PQ = 5 cm
 sin P == 
 cos P == 
- tan P = = . 
- 11.  State whether the following are true or false. Justify your answer.
 (i) The value of tan A is always less than 1.
 (ii) sec A =for some value of angle A. 
 (iii) cos A is the abbreviation used for the cosecant of angle A.
 (iv) cot A is the product of cot and A.
 (v) sin q =. - Solution:(i) False. The value of tan 90◦ is grater than 1
 (ii) True. sec A =Þ cos A = as 12 the hypotenuse is the largest side of triangle. 
 (iii) False. cos A is the abbreviation for cosine of angle A
 (iv) No,False. cos A is not the product of cot and A
 (v) False, Because the hypotenuse is the longest side whereas in sin q =, 3 which is the denominator is cannot be the hypothenuse. 
 
 
 12. Evaluate the following: 
 (i) sin 60° cos 30° + sin 30° cos 60°
 (ii) 2 tan2 45° + cos2 30° – sin2 60°
 (iii)
 (iv)
 (v). - Solution:=
 
 13. Choose the correct option and justify your choice:(i) =(A) sin 60° (B) cos 60° (C) tan 60° (D) sin 30° 
 (ii)=(A) tan 90° (B) 1 (C) sin 45° (D) 0 
 (iii) sin 2A = 2 sin A is true when A =
 (A) 0° (B) 30° (C) 45° (D) 60°
 (iv)=(A) cos 60° (B) sin 60° (C) tan 60° (D) sin 30°. - Solution:(i)= = 
 =
 == 
 = sin 600
 Answer: A
 (ii)= = 0 
 Answer: D
 (iii) sin 2A = 2 sin A is true when A = 450Answer: A
 (iv)= = 
 =
 =
 =
 =´ 
 == = tan 600. Answer: C
 
 14. tan (A + B) = and tan (A – B) = ; 0° < A + B 90°; A > B, find A and B. - Solution:If tan(A + B) = 
 tan(A - B) = 1/
 If tan A+B =
 Þ A + B = 600 ………………………(1)
 tan (A – B) =
 A – B = 300 ……………………..(2)
 Adding (1) ´ (2) 2A = 900A = 450
 \B = 150.
 
 15. State whether the following are true or false. Justify your answer. 
 (i) sin (A + B) = sin A + sin B.
 (ii) The value of sinincreases as increases. 
 (iii) The value of cosincreases as increases. 
 (iv) sin= cos for all values of . 
 (v) cot A is not defined for A = 0°.- Solution:(i) sin(A+B) = sin A + sin B
 False
 (ii) Value of sin q  as q increase
 True
 (iii) Value of cos q  as q ncreases
 False
 (iv) sinq = cosq for all values of q
 False
 (v) cot A is not defined for A = 00
 True.
 
 16. Evaluate: 
 (i)
 (ii)
 (iii) cos480 – sin 420
 (iv)cosec 310 – sec 590.- Solution:(i) 
 =
 == 1 
 (ii)= = = 1 
 (iii) cos480 – sin 420cos480 = cos(90 - 420)
 = sin 420
 \cos 480 – sin 420 = sin 420 – sin 420 = 0
 (iv) cosec 310 – sec 590
 cosec 310 = cosec(900 - 590)
 = sec 590
 LHS = sec 590 – sec 590 = 0.
 21. A, B and C are interior angles of a triangle ABC, then show that sin= cos . - Solution:
 
 22. Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°. - Solution:
 
 23. Express the trigonometric ratios sin A, cos A and tan A in terms of sec A. - Solution:
 
 24. Write all the other trigonometric ratios of Ð A in terms of sec A. - Solution:sin A =  
 =
 cos A =
 tan A == ¸ 
 =´ sec A. =
 
 25. Evaluate:(i) (ii) sin 250. cos 650 + cos 250 sin 650. - Solution:
 
 26. Choose the correct option. Justify your choice. 
 (i) 9 sec2 A – 9 tan2 A =
 (A) 1 (B) 9 (C) 8 (D) 0
 (ii) (1 + tan q + secq ) (1 + cot q – cosec q ) =
 (A) 0 (B) 1 (C) 2 (D) –1
 (iii) (sec A + tan A) (1 – sin A) =
 (A)sec A (B) sin A (C) cosec A (D) cos A
 (iv)
 (A) sec2 A (B) –1 (C) cot2 A (D) tan2 A.- Solution:(i) 9 sec2A - 9 tan2A
 = 9 (1 + tan2A) – 9 tan2A
 = 9 + 9 tan2A - 9 tan2A
 = 9Answer (B)(ii)
 (iii) (sec A + tan A) (1 – sin A)
 sec A – sin A sec A + tan A – tan A sin A+ - .sinA (iv)= = = tan2A. 
 
 27. Prove the following identities, where the angles involved are acute angles for which the expressions are defined. 
 (i) (cosecq - cot q )2 =
 (ii)= 2 secA 
 (iii)= 1 +secq cosecq 
 (iv)= (v)= Cosec A +cot A - Solution:(i) (cosecq - cot q )2 = 
 RHS= 
 
 =
 = cosec2q - 2cosecq . cotq + cot2q = (cosec q - cotq )2
 Hence Proved.(ii)
 == 
 == 
 == 2 sec A 
 (iii)(iv)= 
 LHS
 RHS= 
 = LHS
 (v)
 Using the identity cosec2A = 1 + cot2A.
 Taking the LHS of the given equation
 Dividing the numerator and denominator by sin A
 =(Changing = cot A ´ 
 =
 (Replacing cosec2A - cot2A = (cosec A + cot A) (cosec A - cot A) using the identity cosec2A - cot2A = 1
 =
 =
 = cosec A + cotA.
 
 28. Prove the following identities, where the angles involved are acute angles for which the expressions are defined. 
 (i)= secA + tanA - Solution:(i) 
 =Taking the conjugate of (1-sinA) + multiplying the numerator and denominator by it. 
 =
 =(Since 1 - sin2A = cos2A) 
 == 
 == sec A + tan A (As = sec A, = tan A) 
 (ii) (sin A + cosec A)2 + (cos A + sec A)2
 = sin2A + cosec2A + 2sinA.cosec A + cos2A + sec2A + 2cos A. sec A
 = sin2A + cos2A + cosec2A + sec2A + 2sinA .+ 2cos A. 
 = 1 + 2 + 2 + cosec2A + sec2A (using cosec A =secA = ) 
 = 5 + 1 + tan2A + 1 + cot2A
 = 7 + tan2A + cot2A (1 + tan2A = sec2A) 1 + cot2A = cosec2A
 (iii) (cosec A - sin A) (secA - cosA)
 LHS
 (cosec A - sin A) (sec A - cos A)(since 1 - sin2A = cos2A and 1 - cos2A = sin2A) 
 == sin A cosA 
 RHS= 
 =(Taking LCM as cosA. sinA) 
 =(since sin2A + cos2A = 1) 
 LHS = RHS
 Hence the result.
 (iv)LHSRHSThus, LHS = RHS.
 
 17. Show that tan 480 tan 230 tan 420 tan 670 = 1. - Solution:(i) tan 480 tan230 tan 420 tan670 = 1
 LHS = tan 480. tan 420 tan 230 tan670
 = tan 480. tan(900 - 480). tan(900 - 670) tan 670
 = tan 480. cot 480. cot670 tan 670 .
 = 1 ´ 1 = 1.
 
 18. If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A. - Solution:tan 2A = cot (A – 18) ………………. (1)
 where 2A is an acute angle
 tan 2A = cot(90 – 2A) = cot(A – 18)
 cot 90 – 2A and A - 18 are acute angles.
 90 – 2A = A – 18
 3A = 108
 A = 360.
 
 19. If tan A = cot B, prove that A + B = 90°. - Solution:If tan A = cot B …………… (1)
 tan A = cot (90 – A)
 From (1)
 cot (90 - A) = cot B
 Þ 90 – A = B
 or A + B = 900.
 
 20. If sec 4A = cosec (A – 20°), where 4A is an acute angle, find the value of A. - Solution:If sec 4A = cosec (A – 200)
 sec 4A = cosec (90 – 4A)
 \cosec(90 – 4A) = cosec (A – 200)
 Since (90 – 4A) and A – 200 are acute angles
 90 – 4A = A – 200
 90 + 20 = 5A
 A =
 = 220.
 
- Solution:(i) False. The value of tan 90◦ is grater than 1
 
- tan P =